
Error Analysis of Recurrence Equations 

By R. Tait 

Abstract. An error analysis of the Miller algorithm for computation from three- 
term recurrence equations is given. Bounds are supplied in terms of the known co- 
efficients and a method of finding suitable starting values for prescribed relative 
error is investigated. 

1. Introduction. The three-term recurrence relation 

(1.1) Ur_A(x) = pr(X)Ur(X) + qr(x)ur+i(x), 

with ur(x) a function of a positive integer r and a real variable x, is widely used in 
computational procedures. Two starting values uV+4 = -Y, u,- = 1, say, are required 
for backward computation, an appropriate nornalisation factor being determined 
later. Further, a computation based on (1.1) is frequently insensitive to the choice 
of -y; that is k significant figures of the normalised sequence un_rn, un-m-_1 ... are 
reliable for m sufficiently large. 

The method of computation is simple and readily adaptable to digital com- 
puters, a single known value of ur permitting scaling of the computed values to 
yield a desired solution. Stegun and Abramowitz [8] have pointed out a second ad- 
vantage; that it is sometimes possible to deduce a scaling factor from computed 
values alone. A discussion of convergence and error analysis may be found in 
Olver [6]. 

In this note we examine the possibility of obtaining simple error bounds in 
terms of the coefficients pr(x) and qr(x). In this way it is possible to specify a start- 
ing value r = n to obtain a required accuracy. In the case of the Bessel functions 
Ir(x) and Jr(x) an investigation of this point has previously been made by Ma- 
kinouchi [4] and Shintani [7]. The problem has now amassed a considerable litera- 
ture and we do not attempt an exhaustive bibliography. Similar results on con- 
tinued fractions are to be found in Khovanski [3] and Khinchine [2]. 

Cases of (1.1) in which two solutions increase at equal rates are excluded; com- 
putationally this is a simple case. We restrict our attention to the case where (1.1) 
may be written as 

(1.2) Ur_1 = PrUr + qrur+i, 

with Pr > 0 for values of r considered. Of course, if Pr < 0 for all r then we would 
set 

(1.3) Vr = (-1)?ur. 

General expressions and bounds for the error term are developed in Section 2 
and special cases considered in Sections 3 and 4. Our nmain interest is to examine 
the error. We do not directly examine convergence of the procedure; references to 
this question may be found in [6]. Nor do we consider improving the rate of con- 
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vergence of the procedure, although it will become clear from our results when it is 
advantageous to do so. 

2. Error in Exact Arithmetic. Eq. (1.2) in the form 

(2.1) Ur-i = PrUr + qrur+l, 

is suitable for backward computation, and we concentrate our attention on this 
form, ignoring round-off error for the time being. We assume Pr, qr defined for 
1 ? r < n and any x considered, with qr F 0. By a nondecreasing solution of (2.1) 
we mean that the solution is nondecreasing as r decreases. We denote the wanted 
solution by Wr, and assume that Wr is positive, nondecreasing for values of r con- 
sidered. If fr and 9r denote solutions of (2.1) such thatf.+1 = 0, f. = 1, and gn+1 = 1, 
g. = 0, then, since qr F 0, fr, gr form a fundamental system of solutions, (Fort [1]), 
and we have 

(i) fr, gr are linearly independent for 0 < r < n + 1, 

(ii) Wr = Wnfr + Wn+lgr. 

In practise (2.1) is used with starting values Un = 1y, un = 1, where we re- 
strict 0 < y < 1. A normalisation constant X is then required and we assume a 
value of Wr known which we take to be wo (p0). Then, provided fo + ygo # 0, Xi 

is given by 

(2.2) n(fo + 7go) = wo . 

It is usual to take y = 0, but convergence of the procedure may be increased with 
a nonzero -y; see below. 

Introducing the notation 

(2.3) Er = r1(fr + Ygr) -Wr Eo = O, and 

(2.4) Er* = Er/Wr, Wr # 0, 

for the error and relative error, respectively, we have 
THEOREM 2.1. If fr 0 0, 0 < r < n, and fo + -ygo # 0, then for 1 < r < n, 

(2.5) Er = (-1)nr (W+l - TW) frfo (-1) s qr-s .qn 
(fo + ygo) 8 fr-s fr-s-1 

Proof. Assume Wn+l yw ywn, otherwise the result is trivial. We have 

1 (fo + Tygo) = wnfO + wn+igo, 
giving 

(2.6) E r --(Wn+ 
- 

'YWn)ffrg r 
(fo + ygo) J fo frf/ 

But 

(2.7) gr 9 gr-1 + (-1)n-r+1 qr .. qn 
fr fr'i frfr-1 

and the result follows by induction. 
We note the following for future reference. 
COROLLARY 2.1. (i) Er satisfies Eq. (2.1). 
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(ii) If the sum in (2.5) is written Er-1 T, then 

(2.8) T+1l < 1 if and only if fr-s-2 > 1q7-8-lj. Ts ~~~~~~fr-8 

(iii) If ITs+i/T, I acx < 1, s = 0, 1, r r-2, then 

(2.9) lErl < (1 - a))- f+ 'ygo fr fo Urf 

We shall take y = 0 for simplicity, but it is clear from (2.5) how the value of -y 
affects Er. Again, with R, = Er/fr, Eq. (2.6) shows the close connection between 
the present problem and convergents to continued fractions. The arguments which 
follow are abbreviated where similar material may be found in for example (2) or 
(3). We proceed to the simplest case, that of positive coefficients. 

3. Positive Coefficients. Let us assume that pr > 0, qr > 0 for 1 < r < n. 
Then fr > 0 and gr > 0. Use of (1.2) with r replaced by r - s - 1 shows that 
Corollary (2.1), (ii) holds. With these conditions it is clear that the terms in the 
sum in (2.5) are of alternating sign and decreasing magnitude, so that Eo = 0, 

(3.1) El (H q1)n1W;+11Iq, 
fo s=l 

(3.2) E2 = (1)n-2 Wn+2 pl 
I q 

fo s9=2 

where in (3.2) we have used the recurrence relation to combine the two terms. In 
general 

(3.3) ? _ rlW+ qs _ (-1) n-rE. _ n< r qs 2 _ r < n, 
fr_2 s=r fr-1 s=r 

for given fixed n. Clearly Er alternates in sign, and since Wr = Wnfr + Wn+lgr we 
have 

(3.4) 0 < (_1)n-rEr* < WIn+l I 1 qs r 2, 

with obvious expressions for E1*, E2*. 
If further, pr _ 1 for r > k, say, where k > 1, then fr, gr are nondecreasing 

as r decreases, for k - 1 < r < n, and using simple induction we find that 

n-I 

(3.5) frfr1 >- pn Il (psp8++ qs) k < r < n-1. 
s=r 

Substitution in the denominator of (3.4) yields 

(3.6) 0 < (-1)n1rEr* < It =rq8 
pn+lpn HH=r (psps+l + qs) 

provided pn+l > 0, for then wn8 > pn+lwn+1. (3.6) can be used either to find a bound 
for Er* or to find a suitable n for specified bounds on Er*. Again (3.6) supplies a 
strict upper bound using only known coefficients. Eq. (2.5) supplies the exact error, 
but its calculation would entail a knowledge of the values of all the fr. 
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The behaviour of Er, Er* can be examined with the aid of the recurrence rela- 
tion. We suppose that at stage k a certain number of reliable figures, m say, has 
been attained and we would like to be sure that this number persists for r < k. 
Since Eo = 0, Er alternates in sign, and 

(3.7) Er-l = prEr + qrErliX 

we have 

(3.8) JE21 = (p1/ql)IEl , 

and in general 

(3.9) lErl < (qr/pr) jEr+lj 

so that if pr > qr > 0, then 

(3.10) lErl < iEr+li 

By our assumption that wr is nondecreasing and positive the same inequality holds 
for Er*. Computed values of fr could be used to test whether there is a solution with 
the properties of Wr, or it would be sufficient, for example, that pr> 1 r = 1 2, 
The relevant material may be collected as follows. 

THEOREM 3.1. (i) If Pr - qr > 0; 1 < r < n, then for fixed n, 

(3.11) lErl < lEr+1i and |Er*| ? !E*+1! , 1 ? r ? n - 1. 

(ii) If Pr > 0, qr > 0 then 

(3.12) E* 11 < !E*+1!, 1 _ r < n-1. 

Proof. (i) follows from the discussion. 
(ii) The alternating property of Er and relation (3.7) give 

jEri11 ' qrlEr+ll , 

and so 

jE* 11 < qrEr+ * jE*+1. 

Since wr,- > (pr + qr)wr+i, by our assumption on Wr, we have 

JE*_ I <-P 
- 

eI E*r+l < |E*+l . 
Pr + qr 

- r 

Eq. (3.12) suggests that it would be advisable to examine the bound for Er* at 
least two successive points. We give two examples to illustrate these points. 

Example 3.1. The Bessel Function Ir(x). 

Ur_i(X) = (2r/x)ur(x) + Ur+l(X), 

with solutions Ir(x), (-1) rKr(x). From (3.6) it follows that 

1*1 ~~(x/2n)2 x 
IEn*| < (z/2n) r > - 

so that if say x = 100 and n = 110, then JE,*oJ < 28 X 1010; with x = 100 and 
n = 60, 1E *I < 2-10. 
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The improvement obtained by increasing n is clear. 
A simple example will show the practicality of our bounds. We take x = 2 and 

n= 10. 

r Trial Values Computed Values Actual Values 
11 l- 
10 Uio= 1 
9 ug = 10 (-6) 3.04389, 0744 (-6) 3.04418, 5903 
8 u8 = 91 (-5) 2.76994, 0577 (-5) 2.76993, 6951 
7 U7 = 738 (-4) 2.24639, 1369 (-4) 2.24639, 1420 
6 U6 = 5,257 (-3)1.60017, 3364 (-3)1.60017, 3364 

0 uO = 7,489,051 (0) 2.27958, 5302 (0) 2.27958, 5302 

with X = 3.04389, 0744 X 10-7 

r Bound for IEr*I Actual IEr* 
11- 
10 

9 (-4) 1.099 (-4) 0.9695 
8 (-6) 1.506 (-6) 1.309 
7 (-8) 2.641 (-8) 2.207 
6 (-10) 6.142 

0 0 0 

Example 3.2. Parabolic Cylinder Functions. 

Ur.i(x) = xur(x) + (r + i)ur+i(x) x _ 1. 

Again, from (3.6) we have 

IEr*I = (n + -) 
r 

n-H { 1 + X2 /(s + 2)} 

so that for x = 5, n = 18, say we have jEs* ? 10-. A little consideration shows. 
that for fixed r and x, IE.*I decreases as n increases. If x2 is of comparable magni- 
tude to n, a factor of 2 enters the denominator for unit increase in n. If x is small 
convergence will be slow. 

4. q,. Not Necessarily Positive. As is to be expected, this case is not so simple,. 
nor convergence as rapid. If in (2.1), pr = p, qr = q, where p and q are constants. 
such that p > 0, q < 0, and p2 < 41qI, then both solutions oscillate. The conditions 
below are sufficient to assure at least one positive monotone increasing solution for 
r decreasing. We again assume wr has these properties. We take -y = 0, and again 
assume qr $ 0. 
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Taking pr > 1 + Iqj, r = 1, 2, *.**, n, we are assured that fr is positive mono- 
tone increasing in the above sense. This condition is perhaps stronger than one 
would wish, but it avoids the need for calculating all the fr to investigate their 
monotonicity. 

If a denotes the maximum value of IT8+1/T8I in (2.5) then since 

T8+i | T1 T2 T8+| 
To ToT1 Ts 

we have 

(4.1) |Er! < Wn+l/fr,l * Iqr q.1 * (1 + a + *. + ar-) 

In fact, since 

T,+_ fr-s qr-s-1 

we can use the recurrence relation and the monotone increasing property of fr to 
show that 

(4.2) fr-s-2 - Pr-s-lfr-s-1 - qr-s-1ifr-s (4.2) ~ ~ ~ ~~> (Pr-s-1 
- 

fqr-s-1D)fr-s 

and so, using the above expression for I T8+1/T8 1, we find that a < 1, provided that 

(4.3) =max |- qk1 < 1, k = 1, 2, .. , r -1. 
Pk - fqkl 

Summarising, we have 
THEOREM 4.1. If Pk > 1 + IqkI, k = 1, 2, *., n, and 

pk > max {1 + jqkj, 21qk }, k = 1,2, ** *, r -1, 

then 

(4.4) lErl < w,+1/(1 - a)frl qr... q. j 

where a is given by (4.3). 
Complications are also added to the study of Er*. However, with our condi- 

tions, it is readily verified that 

(4.5) !Er*! I cWn(1 -<a) *7Jn r (P8. - I1) 

where 

Cn = (Pn-1 - |qn_1|)WnPn (n - r) even, 

and 

Cn = (PnPn- - Iqn-ll)wn+l, (n - r) odd. 

Clearly the bound (4.5) on IEr*1 decreases as r decreases for fixed n. 
Example 4.1. Legendre Functions of the Second Kind, Qnt(x). 

Ur.l(x) = (2 + 1/r)xur(x) - (1 + 1/r)ur+i(x) 
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The preceding conditions hold certainly if x > 4/3. Therefore 

JE* <- 
Wn+1 (3Z- 2 n 1 , n > 2. 

Cn 3x - 4/ n - 2 Hsr((2S + 1)/(s + 1)x - 1) 
With x = 2, n = 10, we find that 

JE3*j < 3.5 X 10-', and 1E2*1 < 7.1 X 10-5. 

With the aid of the tables [9], a short computation shows that 

IEa*I < 5.1 X 10-, and 1E2*I < 3.3 X 10-6. 

This calculation was carried out with X1 = 2.65720,05 X 10-7, retaining four sig- 
nificant figures, and normalising by Qo(2). 

If we wish to improve the bound for IE3*1, that is, to find n for a prescribed 
bound on IE3* J, we proceed as follows. Let 4n denote the above bound on JE,*l for 
starting value n, and assume, for simplicity, that (n - r) is odd. Then we have 

On+2 _ (pnpn-1 -qn-1|) , (1--h). i 

4kn (pn+2pn+1 Iqn+11 ) \ ((2s + 1)x/(s + 1) - 1) 

Thus, in the above example, if we increase n to 12, the bound is decreased by a 
factor of 0.13, and by a further factor of 0.13 if we take n = 14. It is now clear 
how to find n for a prescribed bound on I E* 

Example 4.2. The Bessel Function Jn(x). 

Ur-l(x) = (2r/x)ur(x) - Ur+l(X). 

Our conditions hold only if r > x. This suggests normalisation at some point r > x. 
If x is small, say 0.8, then with n = 10, and normalisation at Jo, we find 

1E3*l ? 1.81 X 10-1. 

If one carries out the computation with a very accurate 

= 2.84368,81977,154 X 10-1 

one in fact finds 

E3 *| < 2.55 X 10-5, 

for normalisation at Jo(0.8). 
Example 4.3. Coulomb Wave Function Fn (, x). 

u (/ ) (2r + 1)[3 + r(r + 1)/X] rrA r[(r + 1)2 + /32]1/2 ur+l(l3 X). 

For r finite, IqrI < 1 so that the only condition we need verify is that pr > 1 + Iqr| 
In order to compare the present bounds with practical results, set v = 2, x = 5 
as in [9, p. 543, Example 1]. This suggests normalisation at ul. With Ur+, replaced 
by u7 (to coincide with our previous notation), our bound becomes 

IEr*1 < 6wn+ .- 1 
Cn n-2 f2p - 1 [1 + 10/p(p -1)] 1 since a < .83. 

p 2 12 5 21/ P-- r 5 [ + (2/p)]I 
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With n = 10, we find that 

JE3*1 ? 3 X 10-'. 

Thus if we normalise by use of the value of Fi(2, 5), then E4*f _ 3 X 10-3, where 
E4* is the relative error in F4(2, 5). Reference to the tables [9] and to [8] shows that 

JE4* I= 1.4 X 10-3. 

Finally we give an example due to Olver [6]. 
Example 4.4. 

12r 2r + 1 
U-1 = 2r - 1 Ur - 2r - 1 Ur+ r1. 

Then 4 ? pr/lqrl _ 6. For n = 4 we find JE2*1 ? 1/150. 

5. Round-Off Error. If r = n gives the starting value, we consider the propaga- 
tion of an error e introduced at step k (<n). For r < k, we obtain fr + r, say, 
rather than fr where 

(5.1) Br = Afr + Bgr r < k, 

and 

(5.2) A- gk+I B = fkB+ 
fk+lgk - fkgk+i' fk+lgk - fkgk+l~ 

Denoting the new and old normalisation constants by ni and no, respectively, we 
have 

(5.3) ni(fo + Bo) = nofo. 
Again, if ErN and Er denote the new and original errors, respectively, then 

(5.4) ErNnifr-Wr, r>k, 

and 

ErN = n1(fr + br) - Wr, r _ k. 

For all r, set 

(5.5) Mr = 71fr - Wr (nl/nqo)Er + (ni/n 1)Wr 

and 

(5.6) Mr* = Mr/Wr = (ni/no)Er* + (n1/n0- 1). 

Since Er* has been previously bounded and 

(5.7) ni/nIo = (1 + Wo/fo)'', 

we can use our previous ideas to find 

(5.8) = Efk+i + , (-1)5 qk+-8* fo . fkfk+l 8s1 fk+l-8fk-8 

and so we may consider Mr* known. For r < k, we have still to consider the term 
nir". This is most conveniently carried out by noting that 
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tii(fT + 6r) -Wr = Er + Bt7ifr(9r/f - go/fo) . 
Thus 

r-1 
(5.9) Er - Er* + (-1) (1 + Mr*)fk+l 82 _ r_s qk 

It is now clearly a matter of applying our preceding bounds to determine the 
magnitude of the additional error involved. As an illustration we repeat the straight- 
forward Example 3.1 with x -2 and n = 10. 

Example 5.1. We write (5.9) as 

Er*N = Er* + Nr. 

Then, with the above notation, and using the conditions of Section 3, we have 

, eI fkfk+l (qr ... 
.qk) 

(1 + 
IEr*D) INrl <=( ) frfr- (1 - J I lfk) 

Suppose now that we replace the trial value 10 in us, and repeat the calculations. 
We tabulate these below, and use 

INr. ? 10(1 + IEr**) 
9pi, IIg- (mSps?i + qq) 

so that 

IEr*N I _Er* I + INrl 

r Trial Values Computed Values Actual Values 
11 0 
10 1 
9 9 (-6) 3.04022,8070 (-6) 3.04418,5903 
8 82 (-5) 2.76998,5575 (-5) 2.76993,6951 
7 665 (-4) 2.24639,0741 (-4) 2.24639,1420 
6 4,737 (-3) 1.60017,3374 (-3) 1.60017,3364 

0 6,748,266 (0) 2.27958,5302 (0) 2.27958,5302 

with 7 = 3.37803,1189 X 10-7. 

r IEr*N/ actual iNrl bound JE.*j bound EEr*NJ bound 
11 - 

10 - 

9 (-3) 1.3001 (-3) 1.222 (-4) 1.099 (-3) 1.332 
8 (-5) 1.7554 (-5) 1.673 (-6) 1.506 (-5) 1.824 
7 (-7) 3.0226 (-7) 2.935 (-8) 2.641 (-7) 3.200 
6 (-9) 6.2493 (-9) 6.825 (-10) 6.142 (-9) 7.440 

0 - 
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Finally, consider the alternative form of normalisation suggested by Olver [6], 
n o 

(5.10) v17 1 = 1, where = 1M. 
r=O r=O 

We have 

n co n 

(= EZmr(10fr) = 1 mrwr + ZmrEr. )11 r=O n+1 r=O 

Combining (5.11) and (5.6) we see that if o0/n,1 1, our previous analysis holds. 
This will be true if the neglected terms Wr (r > n + 1) are negligible, that is, if 

co n 

Z mrwrr 0, and Z mrEr 0. 
n+1 0 

6. Conclusions. We have derived simply calculable strict bounds for the relative 
error in computing the most quickly increasing solution (for r decreasing) of the 
three-term recurrence relation, using Miller's algorithm. These expressions provide a 
simple way of ascertaining a suitable starting value r = n, for prescribed relative 
error Er*. In the cases considered the behaviour of Er* has also been analysed. 
For a given particular case, a short calculation should now be sufficient to de- 
termine either a suitable starting value, or a realistic upper bound for the error. 
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